Autores: Saul, Jeane, Núbia, Beatriz, Marcelo
INTRODUÇÃO
A Distribuição Normal é uma das mais importantes distribuições da estatística, conhecida também como Distribuição de Gauss ou Gaussiana, Sem dúvida já conhecida de alguns leitores como a “curva em forma de sinto”. Foi desenvolvida pelo matemático francês Abraham de Moivre. O estudo do problema dos erros de medida levou à introdução da curva que, mais tarde, recebeu o nome de curva normal.
Além de descrever uma série de fenômenos físicos e financeiros, possui grande uso na estatística inferencial. É inteiramente descrita por seus parâmetros de Média e Desvio Padrão ou seja, conhecendo-se estes consegue-se determinar qualquer probabilidade em uma Normal.
INTRODUÇÃO
A Distribuição Normal é uma das mais importantes distribuições da estatística, conhecida também como Distribuição de Gauss ou Gaussiana, Sem dúvida já conhecida de alguns leitores como a “curva em forma de sinto”. Foi desenvolvida pelo matemático francês Abraham de Moivre. O estudo do problema dos erros de medida levou à introdução da curva que, mais tarde, recebeu o nome de curva normal.
Além de descrever uma série de fenômenos físicos e financeiros, possui grande uso na estatística inferencial. É inteiramente descrita por seus parâmetros de Média e Desvio Padrão ou seja, conhecendo-se estes consegue-se determinar qualquer probabilidade em uma Normal.
As principais características da distribuição normal são:
1. A média da distribuição é µ
2. O desvio-padrão é σ
3. A moda ocorre em x=µ
4. A curva é simétrica em relação a um eixo vertical passado por x=µ
1. A média da distribuição é µ
2. O desvio-padrão é σ
3. A moda ocorre em x=µ
4. A curva é simétrica em relação a um eixo vertical passado por x=µ
APLICAÇÃO
Um interessante uso da Distribuição Normal é que ela serve de aproximação para o cálculo de outras distribuições quando o número de observações fica grande. Essa importante propriedade provem do Teorema Central do Limite que diz que "toda soma de variáveis aleatórias independentes de média finita e variância limitada é aproximadamente Normal, desde que o número de termos da soma seja suficientemente grande" (ver o teorema para um enunciado mais preciso).
Um interessante uso da Distribuição Normal é que ela serve de aproximação para o cálculo de outras distribuições quando o número de observações fica grande. Essa importante propriedade provem do Teorema Central do Limite que diz que "toda soma de variáveis aleatórias independentes de média finita e variância limitada é aproximadamente Normal, desde que o número de termos da soma seja suficientemente grande" (ver o teorema para um enunciado mais preciso).
EXEMPLOS
Um exemplo bastante próximo de todos sobre como a curva de distribuição normal ajuda a definir padrões esperados é a pressão arterial. Quando o médico infla a almofada em nosso braço, lê o manômetro e nos informa que o resultado é 12 por 8, nos sentimos aliviados.Alguém já se perguntou, porém, por que 12/8 e não qualquer outro resultado é considerado padrão de normalidade deste parâmetro médico?
Um exemplo bastante próximo de todos sobre como a curva de distribuição normal ajuda a definir padrões esperados é a pressão arterial. Quando o médico infla a almofada em nosso braço, lê o manômetro e nos informa que o resultado é 12 por 8, nos sentimos aliviados.Alguém já se perguntou, porém, por que 12/8 e não qualquer outro resultado é considerado padrão de normalidade deste parâmetro médico?
A resposta é simples: as curvas de distribuição normal para a pressão arterial sistólica e diastólica tendem a concentrar seus resultados em torno de 120 e 80 mmHg, respectivamente.
Outras aplicabilidade da Distribuição Normal1. A vida média de certo aparelho é de 8 anos,com d.p. de 1,8 ano. O fabricante substitui os aparelhos que causam defeito dentro do prazo de garantia.Se ele deseja substituir no máximo 5% dos aparelhos que apresentem defeito,qual deve ser o prazo de garantia?
Solução: a condição do problema é que, de todos os aparelhos defeituosos, apenas 5 % tenham apresentado defeito dentro o prazo de garantia. Se esse prazo é de x anos a contar da data da compra, 5% das incidências de defeito devem ocorrer em um prazo menor do que x. Ora, a probabilidade 0,05 corresponde ao valor z= -1,645.
Então, o prazo de garantia x se obtém como se segue:
2. Uma empresa usa anualmente milhares de lâmpadas elétricas que permanecem acesas continuamente, dia e noite. A vida de uma lâmpada pode ser considerada uma v.a. normal,com média de 50 dias e d.p. de 15 dias.Em 1º de janeiro,a companhia instalou 8.000 lâmpadas novas. Aproximadamente quantas deverão ser substituídas até 1º de fevereiro?
Solução: Para determinar quantas lâmpadas deverá ser substituídas até 1º de fevereiro,devemos calcular P(X≤31):
P(X≤31)=P(Z≤-1,27)=0,1020.
Deverão ser substituídas (0 ,1020). (8.000)=816 lâmpadas,aproximadamente.
_______________________________________________________
1. Vocês publicaram o post 17 dias após o prazo estipulado. Assim, a nota de vocês terá uma redução.
ResponderExcluir2. Não apresenta referências e muito menos citações das mesmas. Isso é importante para saber a fonte que afirmou determinada coisa. Além disso, se a imagem não foram vocês que produziram, então deve conter a fonte.
3. Sugestão de estruturação para um bom texto:
- Introdução (falar sobre a distribuição normal, sobre o uso dela na Administração e apresentar o texto);
- Conceitos Básicos (falar sobre as características da distribuição normal, apresentando as equações etc);
- Exemplos (apresenta exemplos, de preferência, na área de administração)
- Referências (listar todas as referências)
4. SUGESTÃO GERAL: Leiam e releiam antes de fazer a postagem. O texto precisa ter uma continuidade. Além disso, cuidado para não copiar integralmente textos de outros, mesmo com referências. Não esquecer de referenciar ao longo do texto.